Übersicht Artikel

Überbrückung der Kluft: Navigation an der Schnittstelle von KI und nachhaltiger Beschaffung

Im Zeitalter des rasanten technologischen Fortschritts steht die künstliche Intelligenz (KI) an vorderster Front und verspricht transformative Auswirkungen auf alle Branchen. Für die nachhaltige Beschaffung ist der Weg zur Integration von KI-Tools jedoch sowohl von Versprechen als auch von Fallstricken geprägt. Während Unternehmen eifrig KI einsetzen, um Beschaffungsprozesse zu rationalisieren, stellt sich eine entscheidende Frage: Wie können Entscheidungsträger den Spagat zwischen technologischer Innovation und Nachhaltigkeitszielen meistern?

Autor
Thomas Heine

SDG media GmbH

Nachhaltiges Beschaffungsmanagement: Ein ganzheitlicher Ansatz

Nachhaltiges Beschaffungsmanagement zielt darauf ab, die gesamte Lieferkette zu steuern, negative ökologische, soziale und wirtschaftliche Auswirkungen zu verringern und gleichzeitig positive Beiträge zu verstärken. Zu den Kernpunkten gehören die Integration der Nachhaltigkeit in alle Bereiche der Lieferkette, die Reduzierung von Abfällen und Emissionen, die Förderung der Entwicklung nachhaltiger Produkte und Dienstleistungen sowie die Förderung ethischer und sozial verantwortlicher Geschäftspraktiken. Zusammenarbeit und Kommunikation zwischen allen Beteiligten der Lieferkette, einschließlich Lieferanten, Herstellern, Einzelhändlern und Kunden, sind von entscheidender Bedeutung.

Wird ein nachhaltiges Beschaffungsmanagement effektiv umgesetzt, bringt es zahlreiche Vorteile mit sich, wie z. B. höhere Effizienz, Kostensenkung, Verbesserung des Rufs und Minderung ökologischer und sozialer Risiken. Darüber hinaus spielt es eine zentrale Rolle bei der Erreichung der Ziele der nachhaltigen Entwicklung und der Bekämpfung des Klimawandels.

 

Der KI-Anstieg im Beschaffungswesen

Aufgrund der verbesserten Datenverfügbarkeit, der fortschrittlichen Algorithmen und der höheren Verarbeitungsleistung ist die Nachfrage nach KI-Lösungen in Unternehmen stark gestiegen. Der globale KI-Markt, der für 2022 auf 136 Mrd. US-Dollar geschätzt wird, soll von 2023 bis 2030 eine atemberaubende jährliche Wachstumsrate (CAGR) von 37,3 % verzeichnen. Chief Procurement Officers (CPOs) erkennen zunehmend die Vorteile der Digitalisierung, was zur Integration von KI-Tools in Beschaffungsprozesse führt.

Die Möglichkeiten und Fallstricke von KI in der nachhaltigen Beschaffung

KI befähigt Maschinen, kognitive Funktionen auszuführen, zu lernen und zielgerichtete Handlungen abzuleiten. Dazu gehören auch die Analyse und Interpretation von Daten, um Probleme zu lösen. Die selbstlernende Natur von KI-Systemen sorgt für eine kontinuierliche Verbesserung und passt das Verhalten auf der Grundlage des erworbenen Wissens an.

Eine ideale Unterstützung also für die Rolle des Einkäufers, dessen Funktion eine Verknüpfung von technischen Anforderungen, kommerziellen Überlegungen, logistischen Herausforderungen und einer Vielzahl von Informationen ist. Diese Komplexität erfordert eine Kombination verschiedener Kompetenzen. Hier können KI-gesteuerte Software-Tools Abhilfe schaffen, indem sie sich wiederholende Aufgaben automatisieren, Fehler und Risiken reduzieren, Preisstrategien optimieren und datengestützte Entscheidungen ermöglichen.

Von zentraler Bedeutung für diese Entwicklung sind die Datenquellen. Die Qualität der Daten ist entscheidend für den Erfolg von KI-Anwendungen.

 

 

Die Herausforderungen meistern: Verantwortungsvolle KI in der nachhaltigen Beschaffung

Die Vorteile von KI-Tools sind zwar beträchtlich, aber es gibt auch inhärente Herausforderungen und Risiken. Da sich KI-Systeme schnell weiterentwickeln, hinkt das interne Fachwissen oft hinterher, und es fehlen standardisierte Benchmarks, die eine nahtlose Beschaffung von KI-Lösungen unterstützen. Da es keine standardisierten Maßstäbe für verantwortungsvolle KI-Praktiken und Beschaffung gibt, ist ein sorgfältiger Beschaffungsprozess unabdingbar.

Die Grenzen und Herausforderungen von KI-Tools verstehen

Nur wenn man Stärken und Schwächen von KI-Tools kennst, kannst man ihren Nutzen voll ausschöpfen und bösen Überraschungen vorbeugen. Im Folgenden sind einige Beispiele dafür, wie welche Herausforderungen die Nutzung von KI-Tools mit sich bringen.

1. Voreingenommenheit bei KI-Tools: KI-Algorithmen sind nur so gut wie die Daten, mit denen sie trainiert werden. Einschränkungen oder diskriminierende Informationen in den Trainingsdaten können Vorurteile aufrechterhalten und verstärken, was zu einer verzerrten Berichterstattung oder zur Verstärkung von Stereotypen führt.

2. Fehlende menschliche Aufsicht: KI-Algorithmen haben unter Umständen Schwierigkeiten mit nuancierten Analysen, komplexem Kontextverständnis und ethischen Überlegungen. Wenn man sich ausschließlich auf KI-Tools ohne menschliche Aufsicht verlässt, besteht die Gefahr von Fehlern, Fehlinformationen und der Verbreitung von Falschmeldungen.

3. Blindes Vertrauen in KI-Tools: Die Versuchung, Prozesse vollständig zu automatisieren, kann die Qualität und Tiefe der Arbeit beeinträchtigen. Unkontrollierte Automatisierung kann sich negativ auf den Wert und die Qualität der Ergebnisse auswirken.

4. Mangelnde Transparenz: KI-generierte Inhalte zu verstehen und zu erklären, kann eine Herausforderung sein. Um die Akzeptanz zu fördern, ist Transparenz entscheidend. Dazu gehört die Offenlegung der Datenquellen und die Ermöglichung unabhängiger Audits oder Bewertungen durch Dritte.

Verantwortung der Entwickler für eine verantwortungsvolle KI in der nachhaltigen Beschaffung

Ein verantwortungsbewusstes KI-System hält sich an ethische Standards wie Fairness, Transparenz, Inklusivität und Verantwortlichkeit und bringt ökologische Nachhaltigkeit mit Rentabilität und sozialer Verantwortung in Einklang. In ihrer jetzigen Form ist die KI jedoch keine nachhaltige Lösung. Echte Nachhaltigkeit in der KI bedeutet, Systeme zu entwickeln, die mit der Erhaltung der Umweltressourcen für heutige und künftige Generationen vereinbar sind.

Ein ethischer KI-Anbieter sollte deshalb einen klaren Fahrplan haben, um die Auswirkungen der Technologie auf die Umwelt abzumildern. Er sollte ausreichende Kontrollmechanismen innerhalb des Systems implementieren, um potenzielle Verzerrungen und ethische Probleme bei den Ergebnissen auszuschließen oder zu minimieren.

Erklärbare KI (Explainable AI, XAI) spielt in dieser Landschaft eine entscheidende Rolle, da sie darauf abzielt, die Entscheidungswege von KI-Tools transparent und verständlich zu machen. Verantwortungsbewusste Anbieter setzen spezielle Teams für XAI ein, die Erkenntnisse zur kontinuierlichen Verbesserung von KI-Tools bereitstellen.

Evaluierung von KI-Lösungen für eine nachhaltige Beschaffung

Wenn Unternehmen versuchen, KI-Tools in ihre Beschaffungsprozesse zu integrieren, ist ein robuster Prüfungsprozess unerlässlich, um ethische und nachhaltige Überlegungen sicherzustellen. Zu den wichtigsten Fragen für IT-Beschaffer gehören:

Schlussfolgerung: Die Zukunft der KI in der nachhaltigen Beschaffung

Zusammenfassend lässt sich sagen, dass die Integration von KI-Tools in nachhaltige Beschaffungspraktiken ein immenses Potenzial birgt. Die Entscheidungsträger müssen jedoch vorsichtig sein und sicherstellen, dass die ethischen und nachhaltigen Aspekte nicht durch das Streben nach Effizienzgewinnen beeinträchtigt werden. Transparente Datenpools, ethische Algorithmen Entwicklung, erklärbare KI, kontinuierliche Überwachung und Zusammenarbeit zwischen den Beteiligten sind die Eckpfeiler einer verantwortungsvollen KI-Implementierung in der nachhaltigen Beschaffung. Indem sie diese Elemente sorgfältig aufeinander abstimmen, können Unternehmen einen Kurs einschlagen, bei dem technologischer Fortschritt und nachhaltige Praktiken nebeneinander bestehen und eine Beschaffungslandschaft gestalten, die nicht nur effizient, sondern auch sozial und ökologisch verantwortungsvoll ist.

Zurück